

Faculty

Aimee Wyrick-Brownworth, Dean; Kent Davis, Chair; Marie Pak, Robert Wilson

Faculty Emeriti: Donald R. Halenz, William M. Hemmerlin, James R. Van Hise

chemistry@puc.edu; (707) 965-7597

Degrees and Programs

Chemistry, B.S.	87
Chemistry, B.A.	88
Biochemistry, B.S.	88
Teaching Credential	88
Chemistry, Minor	88

The *Chemistry Department* serves students with a primary interest in chemical science as well as students in other fields for which chemistry is an important foundation. The department has the following objectives:

- To give a thorough grounding in the principles of chemistry, both in theory and in practical experience with instrumentation currently in use.
- To help the student develop problem-solving abilities through a careful analysis of problems and the application of chemical principles.
- To provide an atmosphere where Christian values are integrated into the learning experience.

The department offers several degree options. For students intending to enter a graduate chemistry program or directly enter the profession, both the B.S. in Chemistry and the B.S. in Biochemistry are suitable programs. Students who intend to enter a professional program in one of the medical sciences will find the B.S. in Biochemistry provides a very good preparation. Students are encouraged to work closely with their major advisor to select suitable electives regardless of their career choice. Students whose interests include the liberal arts and languages as well as chemistry may choose the B.A. in Chemistry.

Major in Chemistry, B.S.

A minimum of 93.5 hours (47.5 upper-division hours)

► Required Core Courses (60.5 hours):

CHEM 111+12+13+L	General Chemistry I, II, III+L	5+5+5
CHEM 225	Chemical Modeling	2
CHEM 324+324L	Analytical Chemistry I + Lab	3+1
CHEM 325	Analytical Chemistry II	3
CHEM 371+72+73+L	Organic Chemistry I, II, III+L	4+4+4
CHEM 397	Chemistry Seminar	0.5
CHEM 414	Inorganic Chemistry	3
CHEM 426L	Integrated Chemistry Lab (x4)	1+1+1+1
CHEM 451+452	Thermodynamics	4
CHEM 452	Kinetics	2
CHEM 453	Quantum Mechanics	3
CHEM 481	Biochemistry I	4
CHEM 490	Senior Capstone	1
CHEM 499	Independent Research (2 qtrs.)	1+1
SCIE 290	Sophomore Seminar	1

► Required Core Electives (5 hours):

At least 5 hours from the following:

Additional upper-division CHEM courses

► Required Cognate Courses (28 hours):

MATH 131+132	Calculus I, II	4+4
PHYS 111+112+113	General Physics I, II, III	4+4+4
<i>At least two of the following courses:</i>		
INFS 115	Intro to Computer Programming (4)	
MATH 265	Elementary Linear Algebra (4)	
MATH 269	Elementary Differential Equations (4)	

Chemistry

Major in Chemistry, B.A.

A minimum of 70.5 hours (34.5 upper-division hours)

► Required Core Courses (50.5 hours):

CHEM 111+12+13+L	General Chemistry I, II, III+L	5+5+5
CHEM 324+324L	Analytical Chemistry I + Lab	3+1
CHEM 325	Analytical Chemistry II	3
CHEM 371+72+73+L	Organic Chemistry I, II, III+L	4+4+4
CHEM 397	Chemistry Seminar	0.5
CHEM 414	Inorganic Chemistry	3
CHEM 451	Thermodynamics	4
CHEM 452	Kinetics	2
CHEM 490	Senior Capstone	3
SCIE 290	Sophomore Seminar	1
<i>At least three credits from the following:</i>		3
CHEM 426L	Integrated Chemistry Lab (2-3)	
CHEM 483L	Biochemistry III Lab (2)	
► Required Cognate Courses (20 hours):		
MATH 131+132	Calculus I, II	4+4
PHYS 111+112+113	General Physics I, II, III	4+4+4

Major in Biochemistry, B.S.

A minimum of 102.5-103.5 hours (49.5-52.5 upper-division hours)

► Required Core Courses (57.5-58.5 hours):

CHEM 111+12+13+L	General Chemistry I, II, III+L	5+5+5
CHEM 324+324L	Analytical Chemistry I + Lab	3+1
CHEM 371+72+73+L	Organic Chemistry I, II, III+L	4+4+4
CHEM 397	Chemistry Seminar	0.5
CHEM 426L	Integrated Chemistry Lab (x3)	1+1+1
CHEM 451	Thermodynamics	4
CHEM 452	Kinetics	2
CHEM 481	Biochemistry I	4
CHEM 482	Biochemistry II	4
CHEM 483+483L	Biochemistry III + Lab	3+2
CHEM 490	Senior Capstone	1
SCIE 290	Sophomore Seminar	1
<i>At least one of the following courses:</i>		2-3
CHEM 225	Chemical Modeling (2)	
CHEM 325	Analytical Chemistry II (3)	

► Required Core Electives (6 hours):

At least 6 hours from the following:

Additional upper-division CHEM courses

► Required Cognate Courses (39 hours):

BIOL 121+122+123	Biological Foundations I, II, III	5+5+5
MATH 131+132	Calculus I, II	4+4
PHYS 111+112+113	General Physics I, II, III	4+4+4

At least one of the following courses: 4

BIOL 320	Cell & Molecular Biology (4)
BIOL 354	Genetics (4)
BIOL 469	Immunology (4)

Pre-medical and pre-dental students:

See advisor for recommended cognates.

Teaching Credential

Students desiring to enter a program of studies leading to a California teaching credential in science with a concentration in chemistry may take any of the Chemistry baccalaureate degrees. Students will need to pass the science (chemistry concentration) portion of the CSET exam one quarter prior to doing full-time student teaching. Students are invited to discuss the program with their major advisor in the Chemistry Department.

Those who plan to teach on the secondary level should consult with the credential analyst in the Education Department and should become acquainted with the specific requirements for admission to and successful completion of the Teacher Education Program as outlined in the section entitled "Education" in this catalog.

Minor in Chemistry

A minimum of 30 hours (15 upper-division hours)

Take at least 30 hours (15 upper-division) chosen from any non-service CHEM courses.

Chemistry

CHEM 451 Thermodynamics (See also PHYS 445.)	4 F	CHEM 483L Biochemistry III Laboratory Laboratory discussions and activities introducing the basic experimental techniques of protein biochemistry. One lecture and one laboratory per week. Prerequisite: CHEM 482. Previously CHEM 484L.	2 S	CHEM 499 Independent Research An independent research project undertaken with direction from a faculty member. Arrangements should be made before the beginning of the quarter. Repeatable to a maximum of 4 credits in Bachelor of Science curricula.	1-2 F, W, S
CHEM 452 Kinetics Kinetic theory, chemical kinetics, including enzyme kinetics, transport properties. Prerequisites: CHEM 112, MATH 132, and PHYS 111.	2 W	CHEM 485 Topics in Biochemistry Study of an advanced topic in biochemistry. Topics may include biophysical chemistry, pharmaceutical chemistry, nucleic acid enzymology, signal transduction, or macromolecular structure and function. Repeatable for credit under different subtitles. Prerequisite: CHEM 482 or BIOL 320.	3 Arr		
CHEM 453 Quantum Mechanics (See also PHYS 461.)	3 S	CHEM 486 Topics in Chemistry Study of an advanced topic in chemistry. Topics may include advanced organic synthesis or mechanisms, organometallic chemistry, materials chemistry, or statistical thermodynamics. Repeatable for credit under different subtitles. Prerequisite: CHEM 373.	3 Arr	SCIE 290 Preparation of math and science students for successful pursuit of internship/research, graduate school, and career opportunities. Discussions of discipline-specific career options and skills needed for obtaining a job or success at the next level of education. Includes resume writing and portfolio preparation. Relevant topics of interest presented by guest speakers. 1 credit S/F.	1 W
An introduction to the Schrödinger wave equation and its solutions, the variational method, operator methods, angular momentum, atomic structure, and the chemical bond. Prerequisites: CHEM 111, MATH 132, and PHYS 111.		CHEM 490 Senior Capstone Topics of current interest in chemistry. Under supervision of department faculty, each student prepares and presents a paper on a topic of interest in chemistry. Prerequisite: SCIE 290, 397.	1 W		
CHEM 481 Biochemistry I Structure-function studies of biomolecules, enzyme kinetics, and bioenergetics. Prerequisite: CHEM 373.	4 F	CHEM 495 Independent Study Offers the advanced student opportunity to pursue investigation in a field of special interest under the direction of department faculty.	1-3 Arr		
CHEM 482 Biochemistry II Cellular metabolism of carbohydrates, lipids, and proteins. Signal transduction and hormonal integration of metabolism. Prerequisite: CHEM 481.	4 W				
CHEM 483 Biochemistry III Information pathways of DNA, RNA, protein metabolism, & regulation of gene expression. Prerequisite: CHEM 482.	3 S				

Science

LOWER-DIVISION COURSE: