Mathematics

Faculty
Steve Waters, chair; Roy Benton, Chantel Blackburn, Sidney Shields
Departmental Office: 238 Chan Shun Hall; 965-7269

Degrees and Programs
Mathematics, B.S. .. 123
Biomathematics, B.S. ... 124
Teaching Credential .. 124
Mathematics, Minor .. 125

The Mathematics Department provides courses for future mathematicians, teacher education, general education, and programs in other departments. A common goal of each course is that students will develop problem-solving skills based on mathematical reasoning and understanding, not merely rote memorization. Small class sizes promote communication and teamwork opportunities among students and faculty.

Students majoring in mathematics will have experience with mathematical modeling, abstraction, generalization, logical analysis, and mathematical technology. Students may select courses in order to focus on pure mathematics, applied mathematics, mathematics education, or actuarial certification. The major advisor will assist students with the selection of appropriate courses for each area of focus.

The biomathematics major is an attractive way to prepare for medical or dental school. The major provides excellent preparation for graduate study leading to a Master’s Degree in Public health with emphasis in statistical analysis. A growing area of biological research uses sophisticated mathematics to study genetics, population fluctuations, and metabolic functions. This major provides entry to such graduate programs as Biomathematics, Biostatistics, Mathematical Biology, and Biometrics.

Major in Mathematics, B.S.
A minimum of 66.5 hours (29.5 upper-division hours)

➤ Required Core Courses (43.5 hours):
MATH 131+132+133 Calculus I,II,III 4+4+4
MATH 265 Elementary Linear Algebra 4
MATH 269 Elementary Differential Equations 4
MATH 275 Logic and Sets 4
MATH 331 Probability Theory 3
MATH 351 Introduction to Abstract Algebra I 4
MATH 385 Mathematical Modeling 4
MATH 390 Seminar .5
MATH 421 Elementary Real Analysis I 4
MATH 490 Senior Seminar 1

At least one of the following courses: 3
MATH 332 Mathematical Statistics (3)
MATH 352 Introduction to Abstract Algebra II (3)
MATH 422 Elementary Real Analysis II (3)

➤ Required Core Electives (16 hours):
At least 16 hours of additional MATH courses, 16
of which at least 10 hours must be upper-division.

➤ Required Cognate Courses (7-9 hours):
INFS 115 Intro. to Computer Programming 4
At least one of the following courses: 3-5
CHEM 451 Physical Chemistry (3)
ENGR 211 Engineering Mechanics (3)
ENGR 216 Circuit Theory (4)
FIN 341 Finance (5)
INFS 470 Management Science (4)
PHYS 211 Physics with Calculus (4)
STAT 322 Statistical Methods (3)

All core and cognate courses should be chosen in consultation with the major advisor. In selecting courses, students are encouraged to consider the recommendations described below:

Please Note:
Highlighting indicates substantive updates for the 2017-2018 academic year. Pagination may differ from the 2016-2018 printed copy of the catalog.

Updates are effective July 1, 2017.
Mathematics

Pure Mathematics
A focus on pure mathematics can lead to careers in university teaching and research following graduate studies in mathematics and related areas, such as statistics, computer science, and physics.

The following courses are recommended for students interested in pure mathematics: MATH 267, MATH 332, MATH 352, MATH 422, MATH 425, and MATH 465.

Applied Mathematics
A focus on applied mathematics is a path to careers in medicine, government, business, and industry following graduate study in such areas as computational biology, operations research, and applied statistics.

The following courses are recommended for students interested in applied mathematics: MATH 332, MATH 355, MATH 375, STAT 322, and INFS 470.

It is also recommended that students interested in applied mathematics earn at least a minor in an applied field such as Biology, Business Administration, Physics, or Psychology.

Mathematics Education
A focus on mathematics education is a major component in a program of studies leading to the California Teaching Credential in secondary school mathematics.

The following courses are recommended for students interested in mathematics education: MATH 341, MATH 354, MATH 355, MATH 385, and MATH 451.

Actuarial Certification
Actuarial certification can lead to careers in the insurance and investment industry, where actuaries use a broad knowledge of statistics, finance, and business.

The following courses are recommended for students interested in preparing for the national examinations for actuarial certification: MATH 267, MATH 332, MATH 375, STAT 322, and INFS 470.

Major in Biomathematics, B.S.
A minimum of 85.5 hours (29.5 upper-division hours)

> Required Core Courses (68.5 hours):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111+112+113</td>
<td>Biological Foundations</td>
<td>5+5+5</td>
</tr>
<tr>
<td>BIOL 222</td>
<td>Introduction to Research Methods</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 111+112+113</td>
<td>General Chemistry</td>
<td>5+5+5</td>
</tr>
<tr>
<td>INFS 115</td>
<td>Intro to Computer Programming</td>
<td>4</td>
</tr>
<tr>
<td>MATH 131+132</td>
<td>Calculus I,II</td>
<td>4+4</td>
</tr>
<tr>
<td>MATH 265</td>
<td>Elementary Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH 269</td>
<td>Elementary Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MATH 275</td>
<td>Logic and Sets</td>
<td>4</td>
</tr>
<tr>
<td>MATH 384</td>
<td>Biomathematics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 385</td>
<td>Mathematical Modeling</td>
<td>4</td>
</tr>
<tr>
<td>MATH 390</td>
<td>Seminar</td>
<td>.5</td>
</tr>
<tr>
<td>MATH 490</td>
<td>Senior Seminar</td>
<td>1</td>
</tr>
<tr>
<td>STAT 322</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

> Required Core Electives (17 hours):
At least 17 hours from the following courses:

(Include at least one MATH course and two BIOL courses)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Cell and Molecular Biology</td>
<td>(4)</td>
</tr>
<tr>
<td>BIOL 328</td>
<td>Animal Behavior</td>
<td>(4)</td>
</tr>
<tr>
<td>BIOL 331</td>
<td>Marine Science</td>
<td>(4)</td>
</tr>
<tr>
<td>BIOL 338</td>
<td>Field Biology</td>
<td>(3)</td>
</tr>
<tr>
<td>BIOL 348</td>
<td>Systems Physiology</td>
<td>(5)</td>
</tr>
<tr>
<td>BIOL 354</td>
<td>Genetics</td>
<td>(4)</td>
</tr>
<tr>
<td>BIOL 430</td>
<td>Neurobiology</td>
<td>(4)</td>
</tr>
<tr>
<td>BIOL 469</td>
<td>Immunology</td>
<td>(4)</td>
</tr>
<tr>
<td>CHEM 371+372</td>
<td>Organic Chemistry I,II</td>
<td>(4+4)</td>
</tr>
<tr>
<td>MATH 331</td>
<td>Probability Theory</td>
<td>(3)</td>
</tr>
<tr>
<td>MATH 332</td>
<td>Mathematical Statistics</td>
<td>(3)</td>
</tr>
<tr>
<td>MATH 351+352</td>
<td>Intro to Abstract Algebra I,II</td>
<td>(4+3)</td>
</tr>
<tr>
<td>MATH 355</td>
<td>Combinatorics</td>
<td>(4)</td>
</tr>
<tr>
<td>MATH 375</td>
<td>Numerical Analysis</td>
<td>(4)</td>
</tr>
<tr>
<td>MATH 421+422</td>
<td>Elementary Real Analysis I,II</td>
<td>(4+3)</td>
</tr>
<tr>
<td>MATH 425</td>
<td>Complex Analysis</td>
<td>(4)</td>
</tr>
<tr>
<td>MATH 465</td>
<td>Linear Algebra</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Recommended Cognate Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 373</td>
<td>Organic Chemistry III</td>
<td>(4)</td>
</tr>
<tr>
<td>CHEM 481</td>
<td>Biochemistry</td>
<td>(4)</td>
</tr>
<tr>
<td>PHYS 111+112+113</td>
<td>General Physics (4+4+4)</td>
<td></td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 211+212+213</td>
<td>Physics with Calculus (4+4+4)</td>
<td></td>
</tr>
</tbody>
</table>

Many of the core and elective courses for this major carry pre-requisites. All courses should be chosen and sequenced in consultation with the major advisor.
Teaching Credential

Students desiring to enter a program of studies leading to a California teaching credential in mathematics should take the B.S. degree in Mathematics and complete the recommended courses for the Mathematics Education focus. Students will need to pass the mathematics portion of the CSET exam one quarter prior to doing full-time student teaching. Students are invited to discuss the program with their major advisor in the Mathematics Department.

Those who plan to teach on the secondary level should consult with the credential analyst in the Education Department and should become acquainted with the specific requirements for admission to and successful completion of the Teacher Education Program as outlined in the section entitled “Education” in this catalog.

Minor in Mathematics

A minimum of 27 hours (6 upper-division hours)
Take at least 27 hours (6 upper-division) chosen from any non-service MATH courses. STAT 322 may also apply to the minor if desired.

Mathematics

Service Courses:
(Not applicable to a major or minor in this department)

MATH 095+096 4+4 F, W, S
Basic Algebra I,II
Basic concepts and techniques of algebra for students without recent experience in algebra.
MATH 095 includes integers, algebraic expressions, first degree equations and inequalities, simple rational expressions and proportions, integer exponents, scientific notation, functions, graphs, and solutions of linear equations and systems.
MATH 096 includes factoring, functions, rational and radical expressions, integer exponents and square roots, complex numbers, and solutions of quadratic and rational equations. Prerequisite: MATH 095 or equivalent.

MATH 106 4 F, W, S
College Algebra
 Begins with a quick review of basic algebra, including rational exponents and radicals, complex numbers, linear and quadratic equations, and inequalities. Also includes polynomial and rational functions, composition and inverse of functions, exponential and logarithms, systems of equations, arithmetic and geometric progressions. Other topics may include further study of polynomials and/or linear programming. Prerequisite: Algebra II or Integrated Math III in secondary school (C- or above) or MATH 096.

MATH 113 2 S
Trigonometry
A study of the six trigonometric functions and their relationships to one another, as well as the study of applications involving these six functions. Included are degree and radian measure, right triangle trigonometry, graphs of the trigonometric functions, inverse trigonometric functions, fundamental identities, addition identities, double-angle and half-angle identities, solutions of trigonometric equations, law of cosines, law of sines, and vector triangles. Prerequisite: MATH 106 or a strong background in algebra.

MATH 211+212 3+3 F+W
Foundations of School Mathematics I,II
A two-quarter sequence covering the logic and structure underlying school mathematics. Concepts, procedures, problem-solving and applications at concrete, pictorial, and abstract levels. Must be taken in sequence. Prerequisite: Algebra II or Integrated Math III in secondary school (C- or above) or MATH 096.
MATH 211 includes problem-solving techniques, sets, logic and deductive reasoning, the arithmetic of whole numbers, fractions, decimals, integers, rational and real numbers, ratio and proportion, and percent.
MATH 212 includes geometry, measurement, and basic probability.

Lower-Division Courses:

MATH 130 5 F
Pre-calculus
Functions and graphs emphasized as tools to prepare the student for calculus. Included are polynomial and rational functions, logarithmic and exponential functions, as well as a thorough treatment of the six trigonometric functions and their inverses. Prerequisite: MATH 106 or a strong background in algebra.

MATH 131+132+133 4+4+4 F, W, S
Calculus I,II,III
A three-quarter standard sequence in single-variable and basic multi-variable calculus. Must be taken in sequence. Prerequisite: Knowledge of algebra and trigonometry at the level provided by MATH 130 or by MATH 106 and 113.
MATH 131 focuses on differential calculus and its applications. Includes limits, all derivative tools (including transcendental functions), maximizing/
minimizing applications, related rates, L'Hopital's rule, and antiderivatives. Graphing calculators and mathematical software tools are used extensively. Offered F, W.

MATH 132 focuses on integral calculus and its applications. Includes the fundamental theorems, general substitutions, integration by parts, applications to geometry and physics, differential equations, growth models, infinite series, and Taylor expansions. Graphing calculators and mathematical software tools are used extensively. Offered W, S.

MATH 133 focuses on calculus for multi-variable functions. Includes solid analytic geometry, parametric space curves, partial derivatives, gradients, and multiple integrals in various coordinate systems. Graphing calculators and mathematical software tools are used extensively. Offered S.

MATH 265
4 F
Elementary Linear Algebra
Matrix algebra and determinants, applications to solving systems of linear equations, vector spaces, linear transformations, eigenvalues, and eigenvectors. Prerequisite: MATH 131.

MATH 267
4 S
Vector Calculus
Functions of more than one variable including the general chain rule, line and surface integrals, divergence, curl, gradient, and Stokes' theorem. Prerequisite: MATH 133.

MATH 269
4 W
Elementary Differential Equations
Ordinary differential equations balancing analytic techniques, qualitative methods, and basic modeling. Topics include eigenvalue methods for linear systems, Laplace transforms, phase plane, null-clines, equilibria, harmonic oscillator, and population models. Prerequisite: MATH 132. Recommended prerequisite: MATH 265.

MATH 275
4 S
Logic and Sets
A bridge to upper-division mathematics, developing the student's ability to handle abstract concepts and careful proofs. Propositional and predicate logic, various types of proof, algebra of sets and functions, equivalence relations, and countable sets. Prerequisite: MATH 131.

Upper-Division Courses:

MATH 331
3 W
Probability Theory
Theory and applications of probability theory. Probability distributions and densities including multivariate, marginal, and conditional distributions. Expected value, Chebyshev's and Bayes' theorems. Moment-generating functions and product moments. Special discrete and continuous distributions and densities. Prerequisites: MATH 132, STAT 222. Odd years.

MATH 332
3 S
Mathematical Statistics
Theory and application of sampling distributions, transformation of variables, central limit theory, estimation, hypothesis testing, Bayesian inference, and decision theory. Prerequisite: MATH 331. Odd years.

MATH 334
3 F
Number Theory
Topics include Diophantine equations, theorems and conjectures about prime numbers, congruences, the theorems of Euler and Fermat, perfect numbers, continued fractions, and Pythagorean triples. Prerequisite: MATH 275. Even years.

MATH 354
4 F
Combinatorics
Permutations and combinations, occupancy models, generating functions, recurrence relations, principle of inclusion and exclusion, and pigeonhole principle. Graph Theory includes directed and undirected graphs, Euler and Hamiltonian paths, chromatic number, trees, matchings and coverings. Involves both theory and applications. Prerequisites: MATH 132, 275. Odd years.
MATH 375 4 W
Numerical Analysis
The theory and techniques for finding approximate solutions to mathematical problems, including error analysis, interpolation, approximation, fixed-point iteration, nonlinear equations, systems of equations, integration, and ordinary differential equations. Prerequisites: MATH 132, 265, and INFS 115. Even years.

MATH 384 4 S
Biomathematics
An introduction to the applications of mathematical methods in the modeling of various biological phenomena. Connections are made between diverse biological examples linked by common mathematical themes. Explorations may be selected from a variety of discrete and continuous ordinary or partial differential equation models. Prerequisites: MATH 269, 275. Recommended prerequisites: MATH 265 and INFS 115. Odd years.

MATH 385 4 S
Mathematical Modeling
Mathematical modeling of problems selected from a variety of applied areas, including industry, biology, business, and the social sciences. Both deterministic and stochastic models are considered, with an emphasis on practical problem-solving. Includes exploration of the computer as a problem-solving tool. Prerequisites: MATH 269, 275. Recommended prerequisites: MATH 265 and INFS 115. Even years.

MATH 390 .5 S
Seminar
Topics of current interest in mathematics and mathematics education, including applications of mathematics in other fields, introduced through lectures, reports, and periodicals. Discussion of professional mathematics organizations, conferences, and publications. Prerequisite: upper-division standing. Graded S/F.

MATH 421+422 4+3 F+W
Elementary Real Analysis I,II
A two-quarter sequence focusing on the fundamental definitions and theorems underlying single-variable calculus and related topics. Must be taken in sequence. Prerequisites: MATH 132, 275. Even years.

MATH 425 4 S
Complex Analysis
The elements of the theory of analytic functions including Cauchy’s theorem, calculus of residues, conformality, and applications. Prerequisites: MATH 133, 275. Even years.

MATH 451 4 W
History of Mathematics
A survey of major developments in mathematics from antiquity to modern times. Involves historically relevant problem sets, class discussions, and presentations by students and teacher. Prerequisite: MATH 131. Odd years.

MATH 465 4 S
Linear Algebra
A deeper study than given in MATH 265, including Jordan form, inner product spaces, quadratic forms, Hamilton-Cayley theorem, and normal operators. Prerequisites: MATH 265, 351. Odd years.

MATH 485 1-4 Arranged
Special Topics in Mathematics
Study of a selected topic not covered elsewhere in the curriculum. Course content varies from year to year, with topics such as Topology, Differential Geometry, Chaos & Fractals, and Formal Logic & Gödel’s Theorems. Repeatable for credit under different subtitles.

MATH 490 1 S
Senior Seminar
Topics of current interest in mathematics and mathematics education, including applications of mathematics in other fields. Under supervision of departmental faculty, each student prepares and presents a paper on a topic of interest. Prerequisite: MATH 390.

MATH 495 1-3 Arranged
Independent Study
Qualified students may, with the approval of the department chair, undertake a directed research problem suited to their background and experience. Repeatable to a maximum of 9 credits.

Statistics

Lower-Division Course:

STAT 222 4 F, W, S, Su
Introduction to Statistics
Descriptive statistics, graphical methods, basic concepts of probability, normal probability distributions, central limit theorem, hypothesis tests involving means and proportions, confidence intervals, introduction to correlation and
regression, and chi-square testing. Examples from a wide variety of disciplines, including business, the social sciences, and the life sciences, to prepare students with varying backgrounds and interests to become intelligent consumers and users of statistics. Prerequisites: Algebra II or Integrated Math III in secondary school (C- or above) or MATH 096 (D- or above), ENGL 101.

Upper-Division Course:

STAT 322 3 W, S
Statistical Methods
An intermediate course in applied statistics including multiple regression, analysis of variance, and nonparametric methods. Spreadsheets and statistical software are used to perform calculations. Prerequisite: STAT 222.